Hexose Kinases and Their Role in Sugar-Sensing and Plant Development
نویسندگان
چکیده
Hexose sugars, such as glucose and fructose produced in plants, are ubiquitous in most organisms and are the origin of most of the organic matter found in nature. To be utilized, hexose sugars must first be phosphorylated. The central role of hexose-phosphorylating enzymes has attracted the attention of many researchers, leading to novel discoveries. Only two families of enzymes capable of phosphorylating glucose and fructose have been identified in plants; hexokinases (HXKs), and fructokinases (FRKs). Intensive investigations of these two families in numerous plant species have yielded a wealth of knowledge regarding the genes number, enzymatic characterization, intracellular localization, and developmental and physiological roles of several HXKs and FRKs. The emerging picture indicates that HXK and FRK enzymes found at specific intracellular locations play distinct roles in plant metabolism and development. Individual HXKs were shown for the first time to be dual-function enzymes - sensing sugar levels independent of their catalytic activity and controlling gene expression and major developmental pathways, as well as hormonal interactions. FRK, on the other hand, seems to play a central metabolic role in vascular tissues, controlling the amounts of sugars allocated for vascular development. While a clearer picture of the roles of these two types of enzymes is emerging, many questions remain unsolved, such as the specific tissues and types of cells in which these enzymes function, the roles of individual HXK and FRK genes, and how these enzymes interact with hormones in the regulation of developmental processes. It is anticipated that ongoing efforts will broaden our knowledge of these important plant enzymes and their potential uses in the modification of plant traits.
منابع مشابه
Characterization of isoforms of hexose kinases in rice embryo.
Hexose kinases in rice embryos have been characterized. Six isoforms were detected: i.e. three glucokinases (GK1-3), two hexokinases (HK1 and HK2) and one fructokinase (FK1). Out of these, GK3, HK1 and HK2 were inhibited by mannoheptulose and glucosamine, known inhibitors of hexokinase activity. These inhibitors are also known to be modulators of sugar sensing processes. The results suggest tha...
متن کاملSeparation and characterization of four hexose kinases from developing maize kernels.
Four forms of hexose kinase activity from developing maize (Zea mays L.) kernels have been separated by ammonium sulfate precipitation, gel filtration chromatography, blue-agarose chromatography, and ion exchange chromatography. Two of these hexose kinases utilized d-glucose most effectively and are classified as glucokinases (EC 2.7.1.2). The other two hexose kinases utilized only d-fructose a...
متن کاملSugar-regulated expression of a putative hexose transport gene in grape.
Different lengths of the promoter of grape (Vitis vinifera) VvHT1 (Hexose Transporter 1) gene, which encodes a putative hexose transporter expressed during the ripening of grape, have been transcriptionally fused to the beta-glucuronidase reporter gene. In transgenic tobacco (Nicotiana tabacum) transformed with these constructs, VvHT1 promoters were clearly responsible for the sink organ prefer...
متن کاملSucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development.
Sucrose cleavage is vital to multicellular plants, not only for the allocation of crucial carbon resources but also for the initiation of hexose-based sugar signals in importing structures. Only the invertase and reversible sucrose synthase reactions catalyze known paths of sucrose breakdown in vivo. The regulation of these reactions and its consequences has therefore become a central issue in ...
متن کاملA role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds.
To analyze sugar transport processes during seed development of fava bean, we cloned cDNAs encoding one sucrose and one hexose transporter, designated VfSUT1 and VfSTP1, respectively. sugar uptake activity was confirmed after heterologous expression in yeast. Gene expression was studied in relation to seed development. Transcripts were detected in both vegetative and seed tissues. In the embryo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013